1 You are given that $\mathrm{f}(x)=x^{3}+k x+c$. The value of $\mathrm{f}(0)$ is 6 , and $x-2$ is a factor of $\mathrm{f}(x)$.
Find the values of k and c.

2 The triangle shown in Fig. 10 has height $(x+1) \mathrm{cm}$ and base $(2 x-3) \mathrm{cm}$. Its area $\mathrm{i} \mathrm{cm}^{2}$.

Fig. 10
(i) Show that $2 x^{2}-x-21=0$.
(ii) By factorising, solve the equation $2 x^{2}-x-21=0$. Hence find the height and base of the triangle.

3 When $x^{3}+k x+5$ is divided by $x-2$, the remainder is 3 . Use the remainder theorem to find the value of k.

4 When $x^{3}+3 x+k$ is divided by $x-1$, the remainder is 6 . Find the value of k.

5 You are given that

- the coefficient of x^{3} in the expansion of $\left(5+2 x^{2}\right)\left(x^{3}+k x+m\right)$ is 29 ,
- when $x^{3}+k x+m$ is divided by $(x-3)$, the remainder is 59 .

Find the values of k and m.

6 You are given that $\mathrm{f}(x)=x^{3}+6 x^{2}-x-30$.
(i) Use the factor theorem to find a root of $\mathrm{f}(x)=0$ and hence factorise $\mathrm{f}(x)$ completely.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
(iii) The graph of $y=\mathrm{f}(x)$ is translated by $\binom{1}{0}$.

Show that the equation of the translated graph may be written as

$$
\begin{equation*}
y=x^{3}+3 x^{2}-10 x-24 \tag{3}
\end{equation*}
$$

7 You are given that $\mathrm{f}(x)=x^{3}+9 x^{2}+20 x+12$.
(i) Show that $x=-2$ is a root of $\mathrm{f}(x)=0$.
(ii) Divide $\mathrm{f}(x)$ by $x+6$.
(iii) Express $\mathrm{f}(x)$ in fully factorised form.
(iv) Sketch the graph of $y=\mathrm{f}(x)$.
(v) Solve the equation $\mathrm{f}(x)=12$.

